Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(23): 13891-13901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812302

RESUMO

The one-microsecond molecular dynamics simulations of a membrane-protein complex investigate the influence of the aqueous sodium chloride solutions on the structure and dynamics of a palmitoyl-oleoyl-phosphatidylcholine bilayer membrane. The simulations were performed on five different concentrations (40, 150, 200, 300, and 400 mM) in addition to a salt-free system by using the charmm36 force field for all atoms. Four biophysical parameters, (membrane thicknesses of annular and bulk lipids, and the area per lipid of both leaflets), were computed separately. Nevertheless, the area per lipid was expressed by using the Voronoi algorithm. All time-independent analyses were carried out for the last 400 ns trajectories. Different concentrations revealed dissimilar membrane dynamics before equilibration. The biophysical properties of the membrane (thickness, area-per-lipid, and order parameter) have non-significant changes with increasing ionic strength, however, the 150 mM system had exceptional behavior. Sodium cations were dynamically penetrating the membrane forming weak coordinate bonds with single or multiple lipids. Nevertheless, the binding constant was unaffected by the cation concentration. The electrostatic and Van der Waals energies of lipid-lipid interactions were influenced by the ionic strength. On the other hand, the Fast Fourier Transform was performed to figure out the dynamics at the membrane-protein interface. The nonbonding energies of membrane-protein interactions and order parameters explained the differences in the synchronization pattern. All results were consensus with experimental and theoretical works.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Fosfatidilcolinas , Fosfatidilcolinas/química , Cloreto de Sódio , Bicamadas Lipídicas/química , Cátions
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...